Spectral Animation Compression

Chao Wang, Yang Liu, Xiaohu Guo, Zichun Zhong, Binh Le and Zhigang Deng

Outline

- Introduction
- Overall scheme
- Spectral animation compression (SAC)

/1 2015

CV

• Result and demo

Introduction

- Dynamic mesh animation
 - Every mesh has the same connectivity
 - No sudden changes in the subsequent frames

2015

CV

Introduction

• Dynamic animation compression

 Filter-based method: Principal component analysis (PCA)-based method

1 2015

- Predictor-based method
- Method combining filter and predictor: CoDDyaC [Vasa et al., 3DTV07]

Our framework

- Spectral animation compression (SAC)
 - Filter: Manifold Harmonics Bases (MHB) [Vallet and Levy, CGF08]

/1 2015

- Deformation gradient
- Compress the deformation gradient by decomposing it into rotation and stretching parts
- Achieve a good balance between the reconstruction quality and compression ratio

Overall Scheme of SAC

Compress and decompress frame #*i* CVM 2015

- Input: M'_{i-1}(restored frame #(i-1)) and M_i
 (original raw data of frame #i)
- Output: M'_i
- Aim: the deformation
 between M'_i and M'_{i-1} is
 as close to that between
 M_i and M'_{i-1} as possible

Compress and decompress frame #i CVM 2015

Deformation Gradient

Polar Decomposition

$$\boldsymbol{J}_j = \boldsymbol{U}_j \boldsymbol{P}_j$$

CVM 2015

 U_j : rotation matrix (3 Degrees of freedom (Dof)) P_j : stretching matrix (symmetric, 6 Dof) Totally 9 Dof for each triangle, present all of these values as 9 *m*-by-1 column vectors (functions) f_t , t = 1, ..., 9, m is the number of triangles

Manifold Harmonics Bases (MHB) CVM 2015

- MHB is orthogonal to each other with inner product
- MHB can be used as a low-pass filter on userdefined functions on the mesh
- Problem: the functions must be defined on vertices.

Manifold Harmonics Bases (MHB) CVM 2015

• Given a per-vertex function g_t , a per-triangle function f_t can be obtained by averaging the function values on the vertices:

$$\boldsymbol{f}_t = C\boldsymbol{g}_t$$
$$\boldsymbol{g}_t = (C^T C)^{-1} C^T \boldsymbol{f}_t$$

where C is m-by-n matrix with

$$c_{ij} = \begin{cases} \frac{1}{3}, & vertex \ j \ is \ in \ triangle \ i \\ 0, & otherwise \end{cases}$$

Compression with MHB

 Computing spectral descriptors of function g_t on MHB {H_k} by projecting g_t on each H_k: r_{k,t} =< H_k, g_t >

CVM 2015

• In compression, drop out the high frequency data by only using the first l bases where $l \ll n$ (number of vertices)

Quantization and Arithmetic Coding CVM 2015

• Further reduce the compression size of the spectral descriptors $\{r_{k,t}\}$

Decompression

- Restore the spectral descriptors $\{\tilde{r}_{k,t}\}$
- Restore the function \tilde{f}_t

$$\widetilde{\boldsymbol{f}}_t = C \widetilde{\boldsymbol{g}}_t = C \sum_{k=1}^l \widetilde{r}_{k,t} \boldsymbol{H}_k$$

12015

• Deformation gradient

$$\widetilde{\boldsymbol{J}}_j = \widetilde{\boldsymbol{U}}_j \widetilde{\boldsymbol{P}}_j$$

Decompression

• Input: $\{\tilde{J}_j\}$ after decompression, and one vertex $v_0 \in M_i$

CVM 2015

• Reconstruct M'_i by optimizing:

$$\min_{\substack{\boldsymbol{v}_0',\dots,\boldsymbol{v}_{n-1}'\\\text{subject to } \boldsymbol{v}_0'}} \sum_{j=0}^{m-1} ||\boldsymbol{S}_j - \tilde{\boldsymbol{J}}_j||_F^2$$

m, n: number of triangles and vertices, respectively \tilde{J}_j : decompressed deformation gradient between M_i and M'_{i-1} S_j : deformation gradient between M'_i and M'_{i-1}

Decompression

$$\min_{\substack{\boldsymbol{v}_0',\dots,\boldsymbol{v}_{n-1}'}} \sum_{j=0}^{m-1} ||\boldsymbol{S}_j - \tilde{\boldsymbol{J}}_j||_F^2$$

subject to $\boldsymbol{v}_0' = \boldsymbol{v}_0$

CVM 2015

• Convert it to a linear system [Sumner and Popovic, TOG04]:

$$AX = b$$
$$X = [v'_0, \dots, v'_{n-1}]^T$$

Experimental Results

- Restored Error w.r.t. compression size/ratio
- Error metrics:
 - KG error [Karni et al., C&G04]
 - Spatial-Temporal Edge Difference (STED) error [Vasa *et al.*, TVCG11]

1 2015

• Compression size: bit per vertex per frame (bpvf)

Experimental Data and Time Cost

Animation	# of Frames	# of Vertice s	# of triangles	Running Time (s) per frame
Cloth	199	5525	10752	0.4821
Horse-collapse	53	8431	16843	0.5554
Dance	200	7061	14118	0.6541
Humanoid	153	7646	15288	0.5340
Dolphin	100	6179	12278	0.5849
Jump	221	15826	31648	1.7808
Vase	70	2502	5008	0.2378

Experiment on Polar decomposition CVM 2015

• SAC (red) and CoDDyaC [Vasa et al., 3DTV07] (green)

Result on Vase

• SAC (red) and CoDDyaC [Vasa *et al.*, 3DTV07] (green)

Result on Cloth

• SAC (red) and CoDDyaC [Vasa et al., 3DTV07] (green)

Thanks!