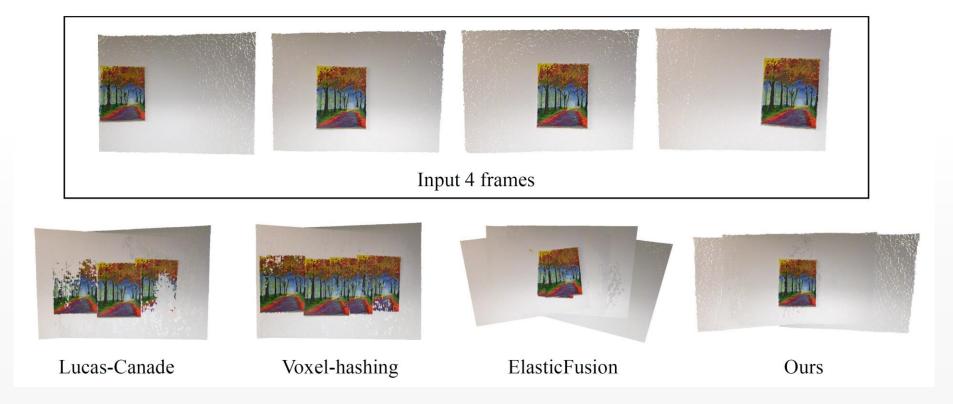
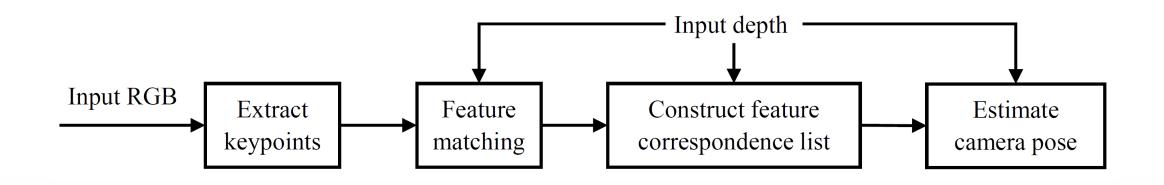

Feature-based RGB-D camera pose optimization for real-time 3D reconstruction

Chao Wang, Xiaohu Guo University of Texas at Dallas

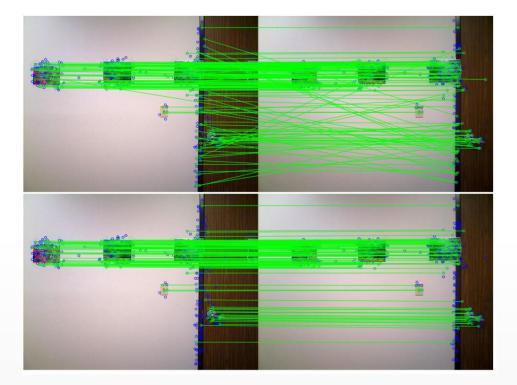

Camera pose estimation in online reconstruction

- ICP-based framework
 - Efficient and reliable with a good initial guess (small adjacent shifts)
 - Unreliable on data with large shifts, or large planar regions
 - KinectFusion [ISMAR11], Voxel-hashing [TOG13], ElasticFusion [RSS15], etc
- Feature-based estimation
 - Robust
 - Low accuracy: unreliable feature matching
 - Inefficient: most offline

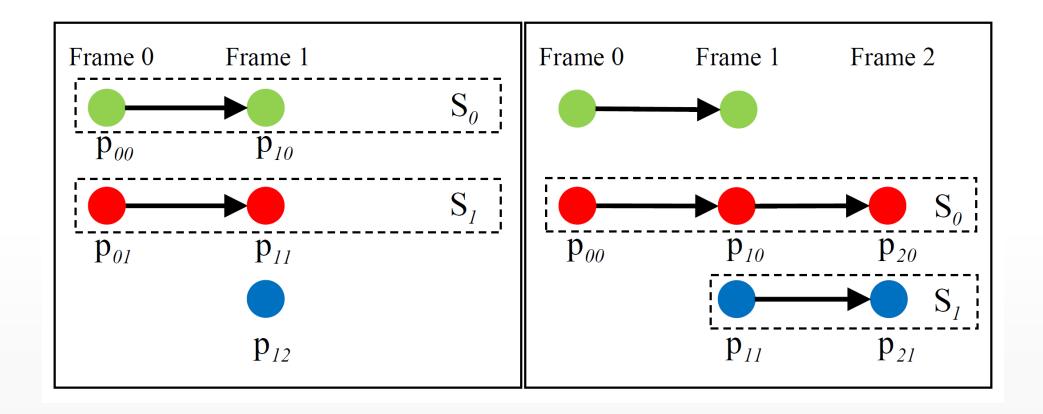


Our method

- Robust: improved feature-matching; feature correspondence list
- Efficient in real-time: low time complexity; GPU-acceleration

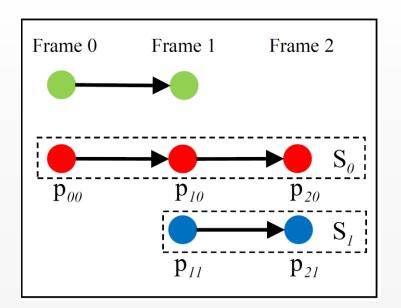


Outline



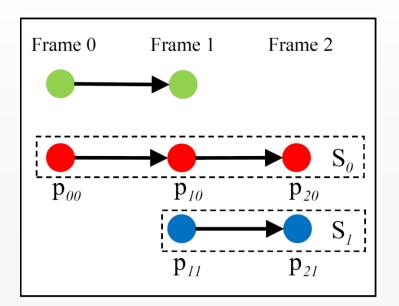
Feature extraction and matching

- SURF: robust and efficient
- RANSAC-based correspondence check
 - Abandon unreliable depth
 - 2D homography
 - 3D relative transformation

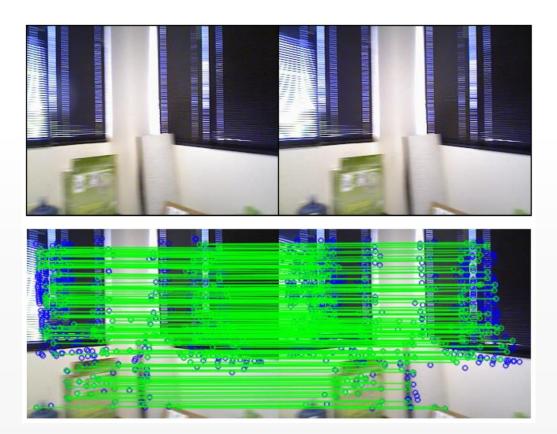

Feature correspondence list (FCL) construction

Camera pose optimization

$$E_{i}(\mathbf{R}_{i}, \mathbf{t}_{i}) = \sum_{j=0}^{m_{i}-1} w_{j} \|\mathbf{R}_{i}\mathbf{p}_{ij} + \mathbf{t}_{i} - \mathbf{q}_{j}\|^{2}, \quad (1)$$
$$\mathbf{q}_{j} = \frac{1}{|\mathbf{S}_{j}| - 1} \sum_{k=n_{j}}^{i-1} (\mathbf{R}_{k}\mathbf{p}_{kj} + \mathbf{t}_{k}), \quad (2)$$


- *i*, *j*: frame index, and point index
- m_i : number of features in frame i
- *p_{ij}*: features' 3D points in camera space
- w_j : weight for point p_{ij}
- R_i, t_i: camera poses
- **q**_j: mass center of *j*th point in global space (in previous frames)

Camera pose optimization (cont.)


$$E(E_r, ..., E_i) = \sum_{k=r}^{i} E_i = \sum_{k=r}^{i} \sum_{j=0}^{m_k - 1} w_j ||\mathbf{R}_k \mathbf{p}_{kj} + \mathbf{t}_k - \mathbf{q}_j||^2$$
$$\mathbf{q}'_j = \frac{1}{|\mathbf{S}_j|} \sum_{k=n_j}^{i} (\mathbf{R}_k \mathbf{p}_{kj} + \mathbf{t}_k)$$

- *i*, *j*: frame index, and point index
- m_i : number of features in frame i
- *p_{ij}*: features' 3D points in camera space
- w_j : weight for point p_{ij}
- R_i, t_i: camera poses
- **q**_j: mass center of *j*th point in global space (in previous frames)

Experimental Results

- Compared with Voxel-hashing [TOG13] and ElasticFusion [RSS15]
- Efficient: only 20ms per frame on average (5 ms in estimating pose)
- Robust on blurred images

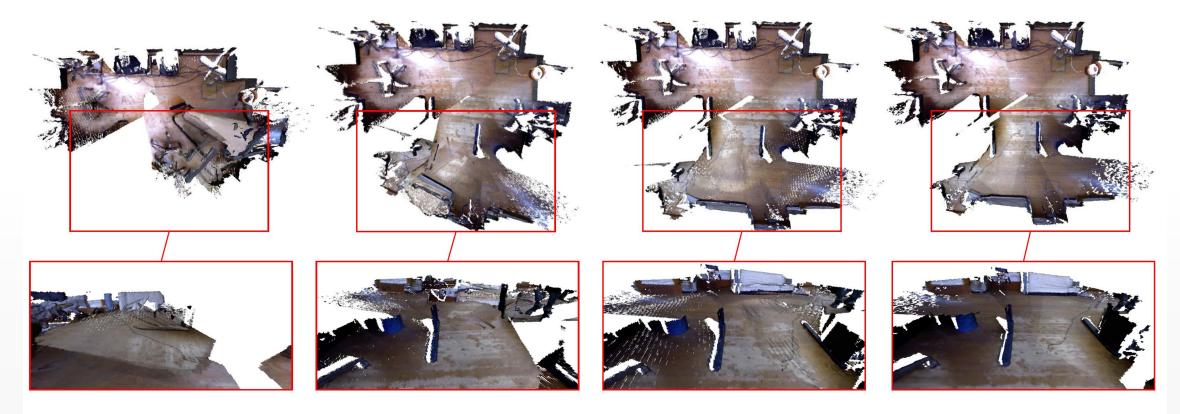
Trajectory and pose estimation

 Tab. 1
 Trajectory estimation comparison using ATE metric between methods.

System	fr1/desk		fr1/floor		fr1/room		fr3/ntf	
	dif1	dif5	dif1	dif5	dif1	dif5	dif1	dif5
Voxel-hashing	1.10	0.74	1.01	0.70	0.61	1.08	1.32	1.30
Ours	0.32	0.32	0.16	0.19	0.34	0.61	0.18	0.082
ElasticFusion	0.027	0.30	0.41	0.54	0.38	0.48	0.080	0.15
Ours	0.035	0.21	0.17	0.22	0.32	0.35	0.080	0.080

Tab. 2 Pose estimation comparison using RPE metric between methods.

System	fr1/desk		fr1/floor		fr1/room		fr3/ntf	
	dif1	dif5	dif1	dif5	dif1	dif5	dif1	dif5
Voxel-hashing	1.57	1.16	1.25	0.98	1.15	1.49	1.60	1.62
Ours	0.91	0.94	0.80	0.80	0.84	1.14	1.36	1.42
ElasticFusion	0.039	0.41	0.42	0.58	0.51	0.63	0.11	0.11
Ours	0.045	0.29	0.43	0.48	0.54	0.61	0.12	0.11


Surface Reconstruction Comparison

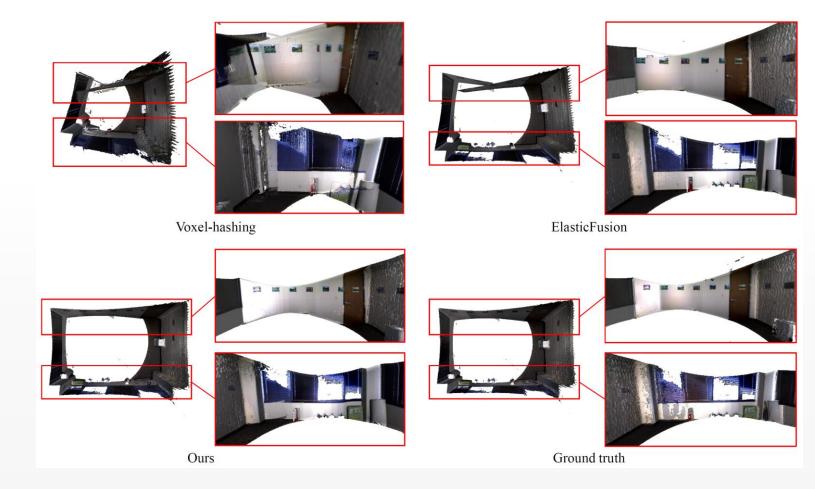
Data: fr1/floor Frame difference: 5 (use 1 out of every 5 frames)

Note: here we show ElasticFusion's reconstruction result on Voxel-hashing platform by using its precomputed camera poses on its original platform.

Reconstruction results on RGB-D benchmark

fr1/floor [IROS12]

Voxel-hashing


ElasticFusion

Ours

Ground truth

Reconstruction results on real scene

• Fast-scanned room: 235 frames

Conclusion

- Combination of two common strategies
- Robust on data with large adjacent shifts
- Efficient in real-time

Q & A

All questions are very welcome!