

DR²: Disentangled Recurrent Representation Learning for Data-efficient Speech Video Synthesis

Chenxu Zhang¹, Chao Wang¹, Yifan Zhao², Shuo Cheng³, Linjie Luo¹, Xiaohu Guo⁴

¹ByteDance Inc, ²Peking University, ³Georgia Institute of Technology ⁴The University of Texas at Dallas

More information: https://zhangchenxu528.github.io/

1) Training phase: using **only 2 mins short videos**. 2) Testing phase: generate endless video sequences with high diversity and continuity.

Standard Paired Training	Unpaired Training	Infinite Recurrent Inference	Gesture Neural Renderin		
Learning relations of input audio and pose sequences with only initial pose	Embedding the unpaired pose and audio in the same latent space	Using last state as recurrent guidance to enhance <i>diversity</i> and <i>consistency</i>	Rendering to realistic Videos with <mark>high quality</mark>		

Qualitative Evaluation

Quantitative Evaluation

Dataset	Method	Offset/confidence	LPIPS	CPBD	FVD	Diversity	Multimodality
Online videos	Speech2Gesture [23]	-3/1.751	0.267	0.520	636.7	6.430	-
	SDT [49]	-3/1.923	0.253	0.511	544.0	8.810	7.796
	Audio2Gesture [36]	_	-	-	-	13.647	11.747
	Ours	-2/ 2.328	0.156	0.569	387.3	16.915	15.931
	Speech2Gesture [23]	1/0.570	0.196	0.492	310.1	8.913	-
Self-captured videos	SDT [49]	-2/1.275	0.187	0.502	302.4	8.513	8.159
	Audio2Gesture [36]	_	-	-	-	11.318	12.553
	Ours	1/2.029	0.135	0.526	246.5	13.447	16.472

Lip-sync metric, Image quality metric, Temporal-level metric, Diversity and Multimodality metric.

One-to-Many		More Results					
nput audio		Ablation for disentangled learning					
		Method	Diversity ↑	Multimodality ↑			
	Baseline	8.753	_				
		+Initial State	8.036	9.943			
		Disontanalad Training	21 740	22 740			

Comparisons of state-of-the-art models with our method. Note that Speech2Gesture and SDT relies on 2D skeletons as intermediate representation while Audio2gesture only generates sequences of 3D models. Compared with these works, our results show sufficient gesture diversity with varying input audios.

Input: one same given audio Output: different synthesized videos with diverse gestures

